Epileptic Seizure Detection by Exploiting Temporal Correlation of EEG Signals
نویسندگان
چکیده
Electroencephalogram (EEG), a record of electrical signal to represent the human brain activity, has great potential for the diagnosis to treatment of mental disorder and brain diseases such as epileptic seizure. Features extraction and classification of EEG signals is the crucial task to detect the stage of ictal (i.e., seizure period) and interictal (i.e., period between seizures) signals for the treatment and precaution of the epileptic patient. However, existing seizure and nonseizure feature extraction techniques are not good enough for the classification of ictal and interictal EEG signals considering their non-abruptness phenomena and inconsistency in different brain locations. In this paper, we present a new approach for feature extraction and classification by exploiting temporal correlation within an EEG signal for better seizure detection as any abruptness in the temporal correlation within a signal represents the transition of a phenomenon. In the proposed methods we divide an EEG signal into a number of epochs and arrange them into two-dimensional matrix and then apply different transformation/decomposition to extract a number of statistical features. These features are then used as an input to least square support vector machine to classify ictal and interictal EEG signals. Experimental results show that the proposed methods outperform the existing state-of-the-art method for better classification in terms of sensitivity, specificity, and accuracy with greater consistence of ictal and interictal period of epilepsy for benchmark datasets and different brain locations.
منابع مشابه
Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملDetection of Pre-stage of Epileptic Seizure by Exploiting Temporal Correlation of EMD Decomposed EEG Signals
Epilepsy is one of the common neurological disorders characterized by a sudden and recurrent malfunction of the brain that is termed “seizure”, affecting over 50 million individuals worldwide. The Electroencephalogram (EEG) is the most influential technique in detection of epileptic seizures. In recent years, many research works have been devoted to the detection of epileptic seizures based on ...
متن کاملEpileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملP81: Detection of Epileptic Seizures Using EEG Signal Processing
Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...
متن کامل